Part 77

Syslog

Version: 2023-02-22

Introduction

In computing, syslog is a standard for message logging. It allows separation of the software
that generates messages, the system that stores them, and the software that reports and
analyzes them. Each message is labeled with a facility code, indicating the type of system
generating the message, and is assigned a severity level.

Computer system designers may use syslog for system management and security auditing as
well as general informational, analysis, and debugging messages. A wide variety of devices,
such as printers, routers, and message receivers across many platforms use the syslog
standard. This permits the consolidation of logging data from different types of systems in a
central repository.

When operating over a network, syslog uses a client-server architecture where a syslog server
listens for and logs messages coming from clients.

Syslog was developed in the 1980s by Eric Allman as part of the Sendmail project. It was
readily adopted by other applications and has since become the standard logging solution on
Unix-like systems. A variety of implementations also exist on other operating systems and it is
commonly found in network devices, such as routers.

Syslog originally functioned as a de facto standard, without any authoritative published
specification, and many implementations existed, some of which were incompatible. The
Internet Engineering Task Force documented the status quo in RFC 3164 in August of 2001. It
was standardized by RFC 5424 in March of 2009.

Configure Syslog Server

On Debian systems, Rsyslog is the default syslogd. Rsyslog package is already installed by
default as well.

apt list rsyslog -a
Sample output;

Listing... Done
rsyslog/stable,now 8.2102.0-2 amd64 [installed]

rsyslog/stable 8.2102.0-2 1386

It is also started and and set to run on system boot. You can check status using the command
below.

sudo systemctl status rsyslog

Sample output

rsyslog.service - System Logging Service
Loaded: loaded (/lib/systemd/system/rsyslog.service; ena>
Active: active (running) since Tue 2022-03-29 13:17:39 E>
TriggeredBy: syslog.socket
Docs: man:rsyslogd(8)
man:rsyslog.conf (5)
https://www.rsyslog.com/doc/
Main PID: 456 (rsyslogd)
Tasks: 4 (limit: 7038)
Memory: 8.2M
CPU: 221ms
CGroup: /system.slice/rsyslog.service
L456 /usr/sbin/rsyslogd -n -iNONE

Mar 29 13:17:38 debian systemd[l]: Starting System Logging Se>
Mar 29 13:17:39 debian systemd[1l]: Started System Logging Ser>
Mar 29 13:17:39 debian rsyslogd[456]: imuxsock: Acquired UNIX>

Mar 29 13:17:39 debian rsyslogd[456]: [origin software="rsysl>
Mar 29 13:17:40 debian systemd[l]: rsyslog.service: Sent sign>
Mar 29 13:27:39 debian rsyslogd[456]: [origin software="rsysl>

Run the following command to open the syslog configuration file.

sudo nano /etc/rsyslog.conf

Next uncomment the lines below to configure the UDP and TCP protocols for log reception.

provides UDP syslog reception
module (load="imudp")
input (type="imudp" port="514")

provides TCP syslog reception

module (load="imtcp")
input (type="imtcp" port="514")

We'll create a new template that instructs the rsyslog server where to save incoming
messages. Add the following after below TCP config.

Stemplate Incoming-logs,"/var/log/$HOSTNAMES/$PROGRAMNAMES . log"

. ?Incoming-logs

It should look like the file below.
provides UDP syslog reception
module (load="imudp")
input (type="imudp" port="514")
provides TCP syslog reception
module (load="imtcp")

input (type="imtcp" port="514")

$template Incoming-logs,"/var/log/$HOSTNAMES/%PROGRAMNAMES . log"
. ?Incoming-logs

igaasddasaassddaaaadddiatadi
GLOBAL DIRECTIVES
FHEFHAHE RS H AR

After you've saved and closed the file, go ahead and inspect the configuration file using the
following command.

sudo rsyslogd -N1 -f /etc/rsyslog.conf
For changes to take effect, use the command below to restart the rsyslog service.
sudo systemctl restart rsyslog

Check that the rsyslog service is listening on the ports specified.

sudo ss -—-tunlp | grep 514

Sample output

udp UNCONN 0 0 0.0.0.0:514 0.0.0.0:%* users: (("rsyslogd",pid=3205, fd=6))
udp UNCONN 0 0 [::]:514 [:]:%* users: (("rsyslogd",pid=3205, £fd=7))
tcp LISTEN 0 25 0.0.0.0:514 0.0.0.0:%* users: (("rsyslogd",pid=3205, £d=8))
tcp LISTEN O 25 [::]:514 [:]:%* users: (("rsyslogd",pid=3205, £d=9))

If you're using a firewall, enable rsyslog firewall port rules.

sudo ufw allow 514/tcp
sudo ufw allow 514/udp

After that, use the following command to restart your firewall.

sudo ufw reload

Configure Rsyslog Client

Set up your rsyslog client to send logs to a remote rsyslog server. Using the command below,
open the configuration file.

sudo nano /etc/rsyslog.conf
Allow FQDN preservation by including the following in the config file.
SPreserveFQDN on
Configure a remote rsyslog server to send logs over UDP by adding the following line.
. @Rsysog-server-IP:514
Use double @ to send over TCP, as shown below.
. @@Rsysog-server-IP:514

Next set up a disk queue to save logs in case the rsyslog server goes down by adding the
following lines.

SActionQueueFileName queue
SActionQueueMaxDiskSpace 1g
SActionQueueSaveOnShutdown on
SActionQueueType LinkedList
SActionResumeRetryCount -1

Save and close the file. For changes to take effect, the rsyslog service must be restarted.

sudo systemctl restart rsyslog

View Log Files In Rsyslog Server

Our log is stored in the /var/log/remote-hostname/ directory according to the template we set
earlier. Suppose the remote-hostname is “debian” and it is the app “systemd” on “debian” that
emits syslog message, e.g.

cd /var/log/debian/

Type the command below to check the log, e.g. we'll check logs for boot.

sudo tail -f /var/log/debian/systemd.log

Sample output

[OK] Finished Permit User Sessions.

2022-03-29T713:40:04.966469+03:00 debian systemd[l]: rsyslog.service: Succeeded.
2022-03-29T713:40:04.967462+03:00 debian systemd[1l]: Stopped System Logging Service.
2022-03-29T713:40:04.970601+03:00 debian systemd[1l]: Starting System Logging Service...
2022-03-29T713:40:04.981814+03:00 debian systemd[l]: Started System Logging Service.
2022-03-29T713:41:35.401652+03:00 debian systemd[999]: Started Application launched by gnome-shell.
2022-03-29T713:41:40.778750+403:00 debian systemd[1l]: Starting Hostname Service...
2022-03-29T713:41:40.843746+03:00 debian systemd[1l]: Started Hostname Service.
2022-03-29T713:42:10.886061+03:00 debian systemd[l]: systemd-hostnamed.service: Succeeded.
2022-03-29T713:42:14.115768+03:00 debian systemd[999]: app-gnome-gnome\x2dcontrol\x2dcenter-3244.scope:
Succeeded.

2022-03-29T13:42:14.116048+03:00 debian systemd[999]: app-gnome-gnome\x2dcontrol\x2dcenter-3244.scope: Consumed
2.955s CPU time.

Sending syslog message in Python - Sample Code

import socket
from datetime import datetime as dt

SYSLOGFORMAT = { 'BSD': 0, 'IETF': 1 }
LEVEL = {'emerg': 0, 'alert': 1, 'crit': 2, 'err': 3,
'warning': 4, 'notice': 5, 'info': 6, 'debug': 7

}

FACILITY = { 'kern': 0, 'user': 1, 'mail': 2, 'daemon': 3,
'auth': 4, 'syslog': 5, 'lpr': 6, 'news': 7,
'uucp': 8, 'cron': 9, 'authpriv': 10, 'ftp': 11,
'localO': 16, 'locall': 17, '"local2': 18, 'local3': 19,
'locald': 20, 'local5': 21, 'localo6': 22, 'local7': 23
}
15—
syslog functions
__
def syslog(host="'localhost', port=514, format=SYSLOGFORMAT['BSD'], level=LEVEL['notice'],
facility=FACILITY['daemon'], hostname = "myhost", appname = "myapp", message='message'):
sock = socket.socket (socket.AF INET, socket.SOCK DGRAM)
data = ""
dteNow = dt.now ()
timestamp = dteNow.strftime ("$Y-%m-%d %$H:%M:%3")
if format == SYSLOGFORMAT['BSD']:
timestamp = dteNow.strftime ("%b %d $H:$M:%S")
data = '<%d>%s %s %s: %$s' % (level + facility*8, timestamp, hostname, appname, message)
elif format == SYSLOGFORMAT['IETF']:
timestamp = dt.strftime ("$Y-Sm-%dT%H:%$M:%S5.0002")
version = 1
data = '<%d>%d %s %s %$s - - - \xEF\xBB\xBF%s' % (level + facility*8, version, timestamp,
hostname, appname, message)
if data != "":
sock.sendto (str.encode (data), (host, port))
sock.close ()
__
syslog (host="192.168.1.42", port=514, format=SYSLOGFORMAT['BSD'], level=LEVEL['info'],
facility=FACILITY['daemon'], hostname='MeRasPi4B-VentiWater', appname='VentiWater',K message="message
info")
syslog (host="192.168.1.42", port=514, format=SYSLOGFORMAT['BSD'], level=LEVEL['debug'],
facility=FACILITY['daemon'], hostname='MeRasPi4B-VentiWater', appname='VentiWater',K message="message

debug")

