
Part 86
-

Protecting Internet-connected
Raspberry Pi’s

Version: 2024-05-16

Hardening Your Raspberry Pi

We are going to discuss some tips on hardening your Raspberry Pi to make it harder for
hackers to abuse your internet-connected pi. Like anything else connected to the internet even
if you follow every best practice for security there is a chance one day someone will get in. The
goal is not to make a 100% unhackable device because they don’t exist. Our goal is to make it
difficult enough, it is not worth the time or effort of breaking in.

Updating Your Raspberry Pi
Before going any further one of the easiest ways to exploit a machine is to find a vulnerable
service running on that system. New exploits are released into the wild every day, and when
they are software makers (*should*) update their software so it is a good idea to always keep
your packages updated. We will be using the built-in APT package manager to do this.

sudo apt update
sudo apt upgrade -y
sudo reboot

This commands will update the list of packages from our trusted repositories and check to
make sure we are running the latest versions. Then, we are going to run the update process, if
you exclude the -y (yes) flag you will be prompted to enter Y/N to verify the packages we want
to update. I like to keep all my packages updated so I let the update run on all packages this
way.
Finally, we will be rebooting the Raspberry Pi so all applied updates can take effect and we can
make sure everything is the way it should be.

Changing the Default SSH Port
Almost everyone uses SSH if you are not you should just go ahead and disable it. If you do
though, you may want to consider changing the default SSH port. Most of the attacks these
days are fully automated and knowing this we also know they will follow a standard set of rules
when attacking. They will check the most common ports looking for known exploitable or
brute-forcible services so if we change our port we can disguise a nice chunk of our attack
surface and help with hardening our Raspberry Pi.

sudo nano /etc/ssh/sshd_config

After running the above command nano will open the config file and allow us to make one
change inside this file. Look for the following line:

#Port 22

We are going to remove the pound sign (#) from the beginning of the line and change 22 to
the port we want SSH to run on. I like to use high port numbers between 20,000 and 50,000
most port scanners will not scan this high without changing default options. So our new line
should look something like this but feel free to pick your own port number:

Port 24863

After making this change you save and exit nano by pressing Ctrl + X and then Y (for yes).
Finally, we need to restart SSH for the changes to take effect.

sudo systemctl restart ssh.service

Removing Default Pi User
Similar to the above SSH changes, the Pi username is one of the most commonly tried
usernames when cracking passwords. We want to make it as difficult as we can for people to
be able to guess our username and password combinations. Before removing the user we need
to add a new, it’s pretty straightforward.

sudo adduser username_here

We are going to want to give our new user account sudo privileges so we are still able to make
system changes from our new account or we will be limited on what we are able to do.

sudo adduser username_here sudo

At this point, let’s go ahead and restart our Pi and log in as the new user we created. We can
restart using the following:

sudo reboot

After logging in as the new user we created we still need to remove the pi user.

sudo deluser -remove-home pi

This will remove the pi user and the home directory for it.

Final word
After doing these 3 relatively simple things you will have mitigated 95% of attacks.
Make sure you keep your system updated by running

sudo apt update
sudo apt upgrade -y
sudo reboot

on a regular base

Using IPTables on your Raspberry Pi

When exposing your device to the outside world you want to make sure you add a firewall this
will keep nasty intruders out. This is not an “end-all” solution, but you want to limit access to
ports people do not need access to. There are lots of solutions you could use as your firewall,
most are built on top of Linux iptables. So we will just use iptables themselves.

sudo apt update
sudo apt -y upgrade
sudo apt -y install iptables-persistent --upgrade

This will install iptables-persistent and any dependencies. Next, we need to set up some
basic rules, please make sure to set up rules for the services you are using or you will be
blocked from them by the firewall.

sudo iptables -F
sudo iptables -A INPUT -p tcp --tcp-flags ALL NONE -j DROP
sudo iptables -A INPUT -p tcp ! --syn -m state --state NEW -j DROP
sudo iptables -A INPUT -p tcp --tcp-flags ALL ALL -j DROP
sudo iptables -A INPUT -i lo -j ACCEPT

First please note all commands use sudo, you need higher privileges to add firewall rules.
Using the above rules we block some basic attacks we will start adding rules to open specific
ports we will use. So I will list the service and then the command to open the port.

Allow SSH connections

sudo iptables -A INPUT -p tcp -m tcp --dport 22 -j ACCEPT

If you only will allow an SSH connection from a specific IP-address eg: 192.168.12.123 then
the command will like this

sudo iptables -A INPUT -p tcp -m tcp -s 192.168.12.123 --dport 22 -j ACCEPT

Allow HTTP server

sudo iptables -A INPUT -p tcp -m tcp --dport 80 -j ACCEPT

Allow HTTPS server

sudo iptables -A INPUT -p tcp -m tcp --dport 443 -j ACCEPT

SMTP server

sudo iptables -A INPUT -p tcp -m tcp --dport 25 -j ACCEPT
sudo iptables -A INPUT -p tcp -m tcp --dport 465 -j ACCEPT

POP3 server

sudo iptables -A INPUT -p tcp -m tcp --dport 110 -j ACCEPT
sudo iptables -A INPUT -p tcp -m tcp --dport 995 -j ACCEPT

IMAP server

sudo iptables -A INPUT -p tcp -m tcp --dport 143 -j ACCEPT
sudo iptables -A INPUT -p tcp -m tcp --dport 993 -j ACCEPT

Home Assistant

sudo iptables -A INPUT -p tcp -m tcp --dport 8123 -j ACCEPT

You may have other services you want to accept connections to, we can add more rules for any
port with a simple command just replace [TYPE] with the type of connection TCP, or UDP.
Replace [PORT] with the port you will be accepting connections on.

sudo iptables -A INPUT -p [TYPE] -m [TYPE] --dport [PORT] -j ACCEPT

Finally, we need to allow outgoing connections we will need our machine to be able to update,
use wget or other outside connections.

sudo iptables -I INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
sudo iptables -P OUTPUT ACCEPT && sudo iptables -P INPUT DROP

So now we have all our rules added, but do we actually? Let’s double-check by running the
following:

sudo iptables -L -n

To make sure that all connections from or to a specific IP address, eg: 192.168.12.123, are
accepted, insert these 2 rules:

sudo iptables -I INPUT -p tcp -s 192.168.12.123 -j ACCEPT
sudo iptables -I OUTPUT -p tcp -d 192.168.12.123 -j ACCEPT

We can save the rules using:

sudo iptables-save >/etc/iptables/rules.v4
sudo ip6tables-save >/etc/iptables/rules.v6

And we are all done! Our system is more secure than it was before and it didn’t even take too
long. Please note adding these rules is not a solution to solve all your problems. It just adds
one more layer of security, finding open ports is half the battle when cracking a machine.

How To Protect SSH with fail2ban

Introduction
SSH is the de facto method of connecting to a cloud server. It is durable, and it is extensible —
as new encryption standards are developed, they can be used to generate new SSH keys,
ensuring that the core protocol remains secure. However, no protocol or software stack is
totally foolproof, and SSH being so widely deployed across the internet means that it
represents a very predictable attack surface or attack vector through which people can try to
gain access.
Any service that is exposed to the network is a potential target in this way. If you review the
logs for your SSH service running on any widely trafficked server, you will often see repeated,
systematic login attempts that represent brute force attacks by users and bots alike. Although
you can make some optimizations to your SSH service to reduce the chance of these attacks
succeeding to near-zero, such as disabling password authentication in favor of SSH keys, they
can still pose a minor, ongoing liability.
Large-scale production deployments for whom this liability is completely unacceptable will
usually implement a VPN such as WireGuard in front of their SSH service, so that it is
impossible to connect directly to the default SSH port 22 from the outside internet without
additional software abstraction or gateways. These VPN solutions are widely trusted, but will
add complexity, and can break some automations or other small software hooks.
Prior to or in addition to committing to a full VPN setup, you can implement a tool called
fail2ban. fail2ban can significantly mitigate brute force attacks by creating rules that
automatically alter your firewall configuration to ban specific IPs after a certain number of
unsuccessful login attempts. This will allow your server to harden itself against these access
attempts without intervention from you.
In this guide, you’ll see how to install and use fail2ban on a Debian 12 server.

Step 1 — Installing fail2ban
fail2ban is available in Debian’s software repositories. Begin by running the following
commands as a non-root user to update your package listings and install fail2ban:

sudo apt update
sudo apt -y install iptables --upgrade
sudo apt -y install fail2ban --upgrade

fail2ban will automatically set up a background service after being installed. You can check its
status by using the systemctl command:

sudo systemctl status fail2ban.service

Step 2 – Configuring fail2ban
During the installation process, fail2ban will generate a file called “jail.conf“ as well as
“fail2ban.conf”.
We need to make a file, named “jail.local“. fail2ban will automatically detect this file and
load in its configuration for it.

sudo nano /etc/fail2ban/jail.local

Add the following lines

[DEFAULT]
backend = systemd

[sshd]
enabled = true
port = ssh
filter = sshd
banaction = iptables-multiport
bantime = -1
maxretry = 3
logpath = %(sshd_log)s
backend = %(sshd_backend)s

The first 2 lines are needed to prevent fail2ban not to start and generate an error

[1329]: ERROR Failed during configuration: Have not found any log file for sshd jail

The next lines are set for the SSH daemon. The first lines in this section that we are adding
enables fail2ban to process those rules for the specified port.
The next lines tells fail2ban that it needs to use the “/etc/fail2ban/filter.d/sshd.conf”
file to filter connections to the SSH port.

In addition to being able to enable it and setting the filter, we can also change what fail2ban
does when someone triggers the filters.
To set the ban action you can utilize the following line. In our example that we have below, we
will be using the “iptables-multiport” ban action.
This action will ban the user that triggered the filter and restrict them from accessing any ports
on the device.
You can find additional actions by checking out the “/etc/fail2ban/action.d/” folder,
typically though you will want to block an attacker on all ports.

In addition to being able to set the ban action, you can also set the number of attempts a user
gets before they are banned as well as how long that they should be banned for.
To do this we can utilize the following two values, we have set some example values that we
will explain below.
The line above “bantime = -1“, sets how long you want the user to be banned for. This value
needs to be in seconds, for example, 1800 will ban the user for 30 minutes. If you want to ban
the user indefinitely, you can set this value to -1 as we have in our example above.
The line “maxretry = 3“, defines how many tries the user gets before the ban action is run. In
our example, we set this to 3 meaning the user will have three chances before they are
banned from accessing the device on all ports.

The line logpath = %(sshd_log)s lets us determine which logs to monitor. fail2ban works by
getting information from SSH logs.

The line backend = %(sshd_backend)s specifies the backend used to get files modification.
When you are happy with your changes, go ahead and save the file by pressing CTRL + X then
Y and finally ENTER.

You should now have the Raspberry Pi fail2ban up and running successfully. To get the fail2ban
software to load up your changes on your Raspberry Pi you need to go ahead and enter the
following command.

sudo systemctl restart fail2ban.service

Now check its status

sudo systemctl status fail2ban.service

Should you see this warning

[1348]: WARNING 'allowipv6' not defined in 'Definition'. Using default one: 'auto'

then you can prevent this by creating a fail2ban.local file and adding these lines

sudo nano /etc/fail2ban/fail2ban.local

add

[DEFAULT]
allowipv6 = auto

Save and restart fail2ban. Check its status again.

Step 3 — Testing the banning policies (Optional)
From another server, one that won’t need to log into your fail2ban server in the future, you can
test the rules by getting that second server banned. After logging into your second server, try
to SSH into the fail2ban server. You can try to connect using a nonexistent name:

ssh blah@your_server

Enter random characters into the password prompt. Repeat this a few times. At some point,
the error you’re receiving should change from Permission denied to Connection refused. This
signals that your second server has been banned from the fail2ban server.
On your fail2ban server, you can see the new rule by checking your iptables output. iptables is
a command for interacting with low-level port and firewall rules on your server. If you followed
DigitalOcean’s guide to initial server setup, you will be using ufw to manage firewall rules at a
higher level. Running iptables -S will show you all of the firewall rules that ufw already
created:

sudo iptables -S

Output

-P INPUT DROP
-P FORWARD DROP
-P OUTPUT ACCEPT
-N f2b-sshd
-N ufw-after-forward
-N ufw-after-input
-N ufw-after-logging-forward
-N ufw-after-logging-input
-N ufw-after-logging-output
-N ufw-after-output
-N ufw-before-forward
-N ufw-before-input
-N ufw-before-logging-forward
-N ufw-before-logging-input
-N ufw-before-logging-output
…

If you pipe the output of iptables -S to grep to search within those rules for the string f2b,
you can see the rules that have been added by fail2ban:

sudo iptables -S | grep f2b

Output

-N f2b-sshd
-A INPUT -p tcp -m multiport --dports 22 -j f2b-sshd
-A f2b-sshd -s 134.209.165.184/32 -j REJECT --reject-with icmp-port-unreachable
-A f2b-sshd -j RETURN

The line containing REJECT --reject-with icmp-port-unreachable will have been added by
fail2ban and should reflect the IP address of your second server.

Apache Web Servers
You can protect your Apache web server using fail2ban as well. The setup is very similar to
what we did for SSH. I will quickly go through an example for Apache below.
If you want to enable protection for Apache against bad bots, then you will need to open the
jail local file.

sudo nano /etc/fail2ban/jail.local

Add the following

[apache-badbots]
enabled = true
port = http,https
filter = apache-badbots
bantime = 48h
maxretry = 1
logpath = %(apache_access_log)s

The filter name will typically be the same name as the module unless you’re using a custom
configuration file. So, [apache-badbots] will have a filter name of apache-badbots.
You can find all the filter configuration files in the following directory, use ls to list all the files.

ls /etc/fail2ban/filter.d/

Once you’re done editing the “jail.local” file, save the file by pressing CTRL + X then Y and
finally ENTER.

Lastly, remember to restart fail2ban on the Raspberry Pi whenever you make a change and
check its status.

sudo systemctl restart fail2ban.service
sudo systemctl status fail2ban.service

For protecting other services, have a look in jail.conf. If you want to add more services,
copy the base setting from jail.conf to jail.local, enable it in jail.local and add also its
filter. Change bantime and maxretries as needed.

Important Note: Do not alter jail.conf nor fail2ban.conf. Changing the behavior of
fail2ban is done in jail.local and fail2ban.local

Conclusion
You should now be able to configure some banning policies for your services. fail2ban is a
useful way to protect any kind of service that uses authentication.

How to unban an IP properly with fail2ban
One way you can avoid this in the future is to configure your jail to include your IP address in
the ignoreip value. Adding your IP address to that ignoreips attribute will allow you to run any
nefarious command without banning yourself.

sudo nano /etc/fail2ban/jail.conf

Add

[DEFAULT]
ignoreip = 192.168.0.1/24 ::1

To ignore more than 1 range ignopreip takes space delimited CIDR blocks. CR's are ignored,
but the next line has to start with a space, so you can break up a very long line as follows:

ignoreip = 0.0.0.0/8 10.0.0.0/8 23.135.225.0/24 23.151.160.0/24
 27.123.224.0/22 27.124.64.0/20 27.126.156.0/22 36.50.0.0/16
 43.225.128.0/22 43.227.184.0/22 43.228.104.0/22 43.228.164.0/22
 43.228.172.0/22 43.229.16.0/22 43.231.130.0/23 43.240.52.0/22
 43.240.232.0/22 23.114.97.241 8.8.8.8 1.1.1.1

A second methode with fail2ban v0.8.8 and later:

fail2ban-client set JAILNAMEHERE unbanip IPADDRESSHERE

The hard part is finding the right jail:

Use iptables -L -n to find the rule name… then use

fail2ban-client status | grep "Jail list" | sed -E 's/^[^:]+:[\t]+//' | sed 's/,//g'

to get the actual jail names. The rule name and jail name may not be the same but it should
be clear which one is related to which.

A third method is interactive. Type in

fail2ban-client -i

then in interactive mode type:

status sshd

you'll get:

Status for the jail: ssh
|- Filter
| |- Currently failed: 0
| |- Total failed: 6
| `- File list: /var/log/auth.log
`- Actions
 |- Currently banned: 1
 |- Total banned: 2
 `- Banned IP list: 203.113.167.162

then type in fail2ban interactive mode:

set sshd unbanip 203.113.167.162

you'll get:

203.113.167.162

it means no longer 203.113.167.162 in ban list.

Type exit to get out of the interactive fail2ban mode

